Description:
| Aims & Learning Objectives: Aims: A treatment of the qualitative/geometric theory of dynamical systems to a level that will make accessible an area of mathematics (and allied disciplines) that is highly active and rapidly expanding.
Objectives:
Conversance with concepts, results and techniques fundamental to the study of qualitative behaviour of dynamical systems. An ability to investigate stability of equilibria and periodic orbits. A basic understanding and appreciation of bifurcation and chaotic behaviour
Content: Topics will be chosen from the following:
Stability of equilibria. Lyapunov functions. Invariance principle. Periodic orbits. Poincaré maps. Hyperbolic equilibria and orbits. Stable and unstable manifolds. Nonhyperbolic equilibria and orbits. Centre manifolds. Bifurcation from a simple eigenvalue. Introductory treatment of chaotic behaviour. Horseshoe maps. Symbolic dynamics.
|