Aims & Learning Objectives: Aims: To introduce students to the techniques, tools and pitfalls of cryptography (including authentication etc.) Objectives:
Students will understand the basic mathematics behind private-key and public-key cryptography. Students will be able to describe several well-known techniques for cryptographic security and authentication.
Content: Introduction to the problem: security, privacy, authentication, repudiation, revocation. The key distribution problem: public vs private keys. The mathematics of crytography: Fermat-Euler Theorem, structure of finite fields and elliptic curves. Crytographicalgorithms: Diffie-Hellman, RSAi, El-Gamal. Cryptanalysis: discrete logarithms, factoring. The Coppersmith attack. Elliptic Curve analogues. Private-key algorithms: DES, 3DES and AES. Good hashing algorithms: MD5, SHA-1. Characteristics of safe keys, using cryptography: digital signatures: how to find the public key. Repudiation and revocation, examples in practice: PGP, digital certificates.
|