Aims & Learning Objectives: To reinforce the student's ability to model conduction in solids and radiation between surfaces. To introduce the student to convective heat transfer and to the solution of engineering heat transfer problems.
After taking this unit the student should be able to:
Understand the concepts and equations governing heat transfer by conduction and radiation, and to be able to solve heat transfer problems of engineering importance. Understand the concepts and equations governing convective heat transfer, and to be able to solve heat transfer problems of engineering importance.
Content: HEAT CONDUCTION AND THERMAL RADIATION : Review of conduction, convection and radiation. Derivation of general equation of conduction. Analytical and numerical solution of selected steady-state and transient conduction problems. Blackbody and greybody radiation, solar radiation, view factors, radiant heat exchange between surfaces. Formulation of radiation equations for numerical solution and application to engineering problems. CONVECTIVE HEAT TRANSFER : Review of basic concepts of buoyancy-driven and forced convection. Derivation of the boundary-layer momentum and energy equations for laminar flow. Turbulence and its effects on heat transfer. The Reynolds analogy between shear stress and heat flux. Solution of the laminar and turbulent boundary-layer equations and applications to engineering problems. The conjugate problem: combined conduction, convection and radiation.
|