- Student Records
Programme & Unit Catalogues

 

Department of Mathematical Sciences, Unit Catalogue 2008/09


MA50089 Applied probability & finance

Credits: 6
Level: Masters
Semester: 2
Assessment: CW 25%, EX 75%
Requisites:

Aims & Learning Objectives:
Aims To develop and apply the theory of probability and stochastic processes to examples from finance and economics. To facilitate an in-depth understanding of the topic.
Objectives: At the end of the course, students should be able to:
* formulate mathematically, and then solve, dynamic programming problems;
* price an option on a stock modelled by a log of a random walk;
* perform simple calculations involving properties of Brownian motion;
* demonstrate an in-depth understanding of the topic.
Content:
Dynamic programming: Markov decision processes, Bellman equation; examples including consumption/investment, bid acceptance, optimal stopping. Infinite horizon problems; discounted programming, the Howard Improvement Lemma, negative and positive programming, simple examples and counter-examples. Option pricing for random walks: Arbitrage pricing theory, prices and discounted prices as Martingales, hedging. Brownian motion: Introduction to Brownian motion, definition and simple properties.Exponential Brownian motion as the model for a stock price, the Black-Scholes formula.