Description:
| Aims & Learning Objectives: Students will learn about the nature of the modelling process, starting with a physical problem, representing it mathematically, simplifying and solving the resulting model and interpreting their results. They will also interact directly with industrialists.
Students should become familiar with real problems arising in industry. They should become able to apply modelling and computational methods to solve these problems. They should learn how to work in teams and to communicate their results.
Content: Applications of the theory and techniques learnt in the prerequisites to solve real problems drawn from from the industrial collaborators and/or from the industrially related research work of the key staff involved. Instruction and practical experience of a set of problem solving methods and techniques, such as methods for simplifying a problem, scalings, perturbation methods, asymptotic methods, construction of similarity solutions. Comparison of mathematical models with experimental data. Development and refinement of mathematical models. Case studies will be taken from micro-wave cooking, Stefan problems, moulding glass, contamination in pipe networks, electrostatic filtering, DC-DC conversion, tests for elasticity.
Students will work in teams under the pressure of project deadlines. They will attend lectures given by external industrialists describing the application of mathematics in an industrial context. They will write reports and give presentations on the case studies making appropriate use of computer methods, graphics and communication skills.
|