- Student Records
Programme & Unit Catalogues

Department of Mathematical Sciences, Unit Catalogue 2011/12


MA50059: Mathematical methods 2

Click here for further information Credits: 6
Click here for further information Level: Masters UG & PG (FHEQ level 7)
Click here for further information Period: Semester 2
Click here for further information Assessment: CW 25%, EX 75%
Click here for further information Supplementary Assessment: Like-for-like reassessment (where allowed by programme regulations)
Click here for further information Requisites:
Click here for further information Description: Aims & Learning Objectives:
Aims:
To introduce students to the applications of advanced analysis to the solution of PDEs.
Objectives: Students should be able to obtain solutions to certain important PDEs using a variety of techniques e.g. Green's functions, separation of variables. They should also be familiar with important analytic properties of the solution. They should be able to demonstrate an in-depth understanding of the subject.

Content:
Topics will be chosen from the following: Elliptic equations in two independent variables: Harmonic functions. Mean value property. Maximum principle (several proofs). Dirichlet and Neumann problems. Representation of solutions in terms of Green's functions. Continuous dependence of data for Dirichlet problem. Uniqueness. Parabolic equations in two independent variables: Representation theorems. Green's functions. Self-adjoint second-order operators: Eigenvalue problems (mainly by example). Separation of variables for inhomogeneous systems. Green's function methods in general: Method of images. Use of integral transforms. Conformal mapping. Calculus of variations: Maxima and minima. Lagrange multipliers. Extrema for integral functions. Euler's equation and its special first integrals. Integral and non-integral constraints.
Click here for further informationProgramme availability:

MA50059 is Optional on the following programmes:

Department of Mathematical Sciences
NB. Programmes and units are subject to change at any time, in accordance with normal University procedures.