Department of Mathematical Sciences, Unit Catalogue 2011/12 |
|
Credits: | 6 |
Level: | Masters UG & PG (FHEQ level 7) |
Period: |
Semester 2 |
Assessment: | CW 25%, EX 75% |
Supplementary Assessment: | Like-for-like reassessment (where allowed by programme regulations) |
Requisites: | |
Description: | Aims & Learning Objectives: Aims: The aim of the course is to introduce students to applications of partial differential equations to model problems arising in biology. The course will complement Mathematical Biology I where the emphasis was on ODEs and Difference Equations. Objectives: Students should be able to derive and interpret mathematical models of problems arising in biology using PDEs. They should be able to perform a linearised stability analysis of a reaction-diffusion system and determine criteria for diffusion-driven instability. They should be able to interpret the results in terms of the original biological problem. They should be able to demonstrate an in-depth understanding of the subject. Content: Topics will be chosen from the following: Partial Differential Equation Models: Simple random walk derivation of the diffusion equation. Solutions of the diffusion equation. Density-dependent diffusion. Conservation equation. Reaction-diffusion equations. Chemotaxis. Examples for insect dispersal and cell aggregation. Spatial Pattern Formation: Turing mechanisms. Linear stability analysis. Conditions for diffusion-driven instability. Dispersion relation and Turing space. Scale and geometry effects. Mode selection and dispersion relation. Applications: Animal coat markings. "How the leopard got its spots". Butterfly wing patterns. |
Programme availability: |
MA50063 is Optional on the following programmes:Department of Biology & Biochemistry
|