|
Academic Year: | 2015/6 |
Owning Department/School: | Department of Physics |
Credits: | 6 |
Level: | Certificate (FHEQ level 4) |
Period: |
Semester 1 |
Assessment Summary: | CW 10%, EX 75%, PR 15% |
Assessment Detail: |
|
Supplementary Assessment: |
PH10048 Mandatory Extra Work (where allowed by programme regulations) |
Requisites: | Students must have A-level Physics and A-level Mathematics in order to undertake this unit. |
Description: | Aims: The aims of this unit are to review the scientific developments which reveal the breakdown of classical physics at the atomic level, to introduce the ideas of energy and angular momentum quantisation and the electronic structure of atoms, to discuss the dual wave-particle nature of matter and radiation, and to introduce our current picture of elementary particles and the forces between them. Learning Outcomes: After taking this unit the student should be able to: * discuss evidence for the quantum nature of microscopic phenomena; * describe models of the atom, the origin of quantisation of energy and the origin of the periodic table; * discuss wave-particle duality and the uncertainty principle; * classify the fundamental particles of nature; * solve simple quantitative problems concerning the interaction of light with matter; * demonstrate the correct use of common laboratory equipment, maintain a scientific logbook, perform basic error analysis and produce an outline scientific report. Skills: Written Communication T/F A, Numeracy T/F A, Data Acquisition, Handling, and Analysis T/F A, Information Technology T/F A, Problem Solving T/F A, Working as part of a group T/F, Practical laboratory skills T/F A. Content: Waves and photons (7 hours): Classical versus quantum physics. An introduction to waves, the wave nature of light: Young's slit experiment, x-ray diffraction (Braggs law), the electromagnetic spectrum; inadequacies of classical models. Wave-particle duality (4 hours): Black-body radiation; the ultraviolet catastrophe and Planck's theory of cavity radiation. Photons and the particle-like properties of electromagnetic radiation: the photoelectric effect. The electromagnetic spectrum. X-rays. Compton scattering. De Broglie's hypothesis. Electron diffraction. Wave aspects of larger particles; atoms, molecules, neutrons. An introduction to the wavefunction and its interpretation. The uncertainty principle. Atomic structure (6 hours): Structure of atoms; scattering of alpha-particles and Rutherford's model, electrons and ions, atomic mass units, Avogadro's number. The Bohr model of the atom. Atomic orbitals, the Pauli exclusion principle and the origin of the periodic table. Deficiencies of Bohr's model. Introduction to particle physics (5 hours): Quarks, leptons and mediators. Antiparticles. Quark model of hadrons. Baryon and lepton number. The four forces. Exchange particles and Feynman diagrams. Laboratory: Performance of experiments designed to develop practical skills and support lecture material. |
Programme availability: |
PH10048 is Compulsory on the following programmes:Department of Physics
PH10048 is Optional on the following programmes:Programmes in Natural Sciences
|