- Student Records
Programme & Unit Catalogues


MA50046: Linear control theory

Follow this link for further information on academic years Academic Year: 2016/7
Further information on owning departmentsOwning Department/School: Department of Mathematical Sciences
Further information on credits Credits: 6      [equivalent to 12 CATS credits]
Further information on notional study hours Notional Study Hours: 120
Further information on unit levels Level: Masters UG & PG (FHEQ level 7)
Further information on teaching periods Period:
Semester 1
Further information on unit assessment Assessment Summary: CW 25%, EX 75%
Further information on unit assessment Assessment Detail:
  • Coursework (CW 25%)
  • Examination (EX 75%)
Further information on supplementary assessment Supplementary Assessment:
MA50046 Mandatory extra work (where allowed by programme regulations)
Further information on requisites Requisites:
Further information on descriptions Description: Aims & Learning Objectives:
Aims:
The course is intended to provide an elementary and accessible introduction to the state-space theory of linear control systems. Main emphasis is on continuous-time autonomous systems, although discrete-time systems will receive some attention through sampling of continuous-time systems. Contact with classical (Laplace-transform based) control theory is made in the context of realization theory.
Objectives: To instill basic concepts and results from control theory in a rigorous manner making use of elementary linear algebra and linear ordinary differential equations. Conversance with controllability, observability, stabilizabilty and realization theory in a linear, finite-dimensional context. Students should be able to demonstrate an in-depth understanding of the subject.

Content:
Topics will be chosen from the following: Controlled and observed dynamical systems: definitions and classifications. Controllability and observability: Gramians, rank conditions, Hautus criteria, controllable and unobservable subspaces. Input-output maps. Transfer functions and state-space realizations. State feedback: stabilizability and pole placement. Observers and output feedback: detectability, asymptotic state estimation, stabilization by dynamic feedback. Discrete-time systems: z-transform, deadbeat control and observation. Sampling of continuous-time systems: controllability and observability under sampling.
Further information on programme availabilityProgramme availability:

MA50046 is Optional on the following programmes:

Department of Mathematical Sciences

Notes: