|
Academic Year: | 2017/8 |
Owning Department/School: | Department of Physics |
Credits: | 6 [equivalent to 12 CATS credits] |
Notional Study Hours: | 120 |
Level: | Honours (FHEQ level 6) |
Period: |
|
Assessment Summary: | CW 100% |
Assessment Detail: |
|
Supplementary Assessment: |
|
Requisites: | Before taking this module you must take PH20105 AND take PH30108 |
Description: | Aims: The aims of this unit are to introduce students to the practical use of computer modelling as a complement to theoretical and experimental solution of physical and astrophysical problems. Learning Outcomes: After taking this unit the student should be able to: * identify the strengths and weaknesses of a computational approach to modelling; * demonstrate a practical knowledge of Python and C programming languages; * construct Python/C programs to analyse astrophysical problems; * use computational modelling to perform in-depth investigations into selected topics; * explain the methodology, issues and output of the investigations performed. Skills: Written Communication T/F A, Numeracy T/F A, Data Acquisition, Handling, and Analysis T/F A, Information Technology T/F A, Problem Solving T/F A. Content: Introduction to computational modelling as a means of gaining insight into physical problems (1 hour). Review of Programming in Python/C (4 hours): constants, variables, expressions, functions, arrays, iterative loops. Differentiation and integration. Standard functions. Input and output of data. Graphical output. Modelling methods (6 hours): Solving equations; linear algebra. Ordinary differential equations: boundary-value problems, Euler's method, Runge-Kutta algorithms, shooting method, finite-difference method. Partial differential equations. Monte Carlo methods. Image processing. N-body simulations of diffuse and centrally-condensed systems. Exercises and projects based upon development of Python/C programs (22 hours): Projects based upon topics including: planetary dynamics, prediction of orbits, multiple-star systems; radiation transport, Boltzmann and Saha equations, opacity; hydrodynamics, Euler equations, formation of shock waves; nuclear reaction networks, stellar nucleosynthesis; equations of stellar structure, modelling the Sun's interior; gas degeneracy, modelling of white dwarfs and neutron stars; astrophysical plasmas; spiral density waves; extragalactic bending of light, gravitational lensing, dark matter; simple cosmological models, large scale structure of the Universe. The Zel'dovich approximation. Image processing and data reduction techniques. |
Programme availability: |
PH30110 is Optional on the following programmes:Department of Physics
|
Notes:
|