Description:
| Aims: The Unit will provide an introduction to the basics of the nature of the atom, elementary bonding theory, solid-state structural chemistry, periodic trends in main group chemistry and the electronic structure of transition metal compounds.
Learning Outcomes: After studying this unit, students should be able to:
* Define basic crystallographic concepts.
* Describe the main types of inorganic structures through cell-projection diagrams.
* Provide a theoretical treatment for lattice energies.
* Describe the basic principles of s- and p-block chemistry, including hydrogen.
* Use the redox properties of the s- and p-block elements to predict and rationalise chemical reactions.
* Describe the basic chemistry of elements from Groups 15, 16 and 17.
* Solve basic problems in quantitative inorganic analysis.
Skills: Numeracy (F, A); Problem solving (T, F, A); Oral communication (F).
Content: Solid state structures, radius ratio rule, cell projections for common structural types, lattice energy. Chemical bonding theory, shapes of molecules. The s-block elements, properties related to reactivity and size. H-bonding. Oxidation states of the p-block elements, stability, lone-pair effect, free energy (Frost) diagrams. Chemistry of the halogens and noble gases and their inter-relationship. Hydrides of O, S, N, P and halogens.
Properties of co-ordination compounds. Tetrahedral, square planar, and octahedral complexes; Introduction to Crystal Field Theory and splitting of d orbitals in octahedral and tetrahedral complexes.
Chemical formulae, moles, molarity, oxidation and reduction. Application of mathematical methods to solving chemical problems.
|