- Student Records
Programme & Unit Catalogues


MA30051: Numerical linear algebra

Follow this link for further information on academic years Academic Year: 2019/0
Further information on owning departmentsOwning Department/School: Department of Mathematical Sciences
Further information on credits Credits: 6      [equivalent to 12 CATS credits]
Further information on notional study hours Notional Study Hours: 120
Further information on unit levels Level: Honours (FHEQ level 6)
Further information on teaching periods Period:
Semester 1
Further information on unit assessment Assessment Summary: CW 25%, EX 75%
Further information on unit assessment Assessment Detail:
  • Coursework (CW 25%)
  • Examination (EX 75%)
Further information on supplementary assessment Supplementary Assessment:
Like-for-like reassessment (where allowed by programme regulations)
Further information on requisites Requisites: Before taking this module you must take MA20216 AND take MA20218 AND take MA20222
Further information on descriptions Description: Aims:
To teach an understanding of iterative methods for standard problems of linear algebra.

Learning Outcomes:
Students should know a range of modern iterative methods for solving linear systems and for solving the algebraic eigenvalue problem. They should be able to analyse their algorithms and should have an understanding of relevant practical issues.

Skills:
Problem Solving (T,F&A), Computing (T,F&A), independent study and report writing.

Content:
Topics will be chosen from the following:
Linear matrix eigenvalue problem: The Schur form. The power method and its extensions. Subspace methods. Error analysis and convergence theory. Perturbation theory. Givens/Householder QR factorization and the QR method. The Lanczos method and extensions. Krylov subspace methods. The Jacobi algorithm. The Divide and Conquer method. Extensions to generalised and nonlinear eigenvalue problems. Special matrix classes and applications. The Singular Value Decomposition and applications.
Iterative methods for linear systems: Convergence of stationary iteration methods. Descent methods and the conjugate gradient method and extensions. Krylov subspace methods and preconditioners. Relationship between Lanczos and conjugate gradient method. Error bounds and perturbation theory. Convergence and extensions. Special matrix classes and applications.
Further information on programme availabilityProgramme availability:

MA30051 is Optional on the following programmes:

Department of Mathematical Sciences
  • TSMA-AFM08 : MSc Modern Applications of Mathematics
  • USMA-AFB15 : BSc(Hons) Mathematical Sciences (Year 3)
  • USMA-AAB16 : BSc(Hons) Mathematical Sciences with Study year abroad (Year 4)
  • USMA-AKB16 : BSc(Hons) Mathematical Sciences with Year long work placement (Year 4)
  • USMA-AFB13 : BSc(Hons) Mathematics (Year 3)
  • USMA-AAB14 : BSc(Hons) Mathematics with Study year abroad (Year 4)
  • USMA-AKB14 : BSc(Hons) Mathematics with Year long work placement (Year 4)
  • USMA-AFB05 : BSc(Hons) Statistics (Year 3)
  • USMA-AAB06 : BSc(Hons) Statistics with Study year abroad (Year 4)
  • USMA-AKB06 : BSc(Hons) Statistics with Year long work placement (Year 4)
  • USMA-AFM14 : MMath(Hons) Mathematics (Year 3)
  • USMA-AFM14 : MMath(Hons) Mathematics (Year 4)
  • USMA-AAM15 : MMath(Hons) Mathematics with Study year abroad (Year 4)
  • USMA-AKM15 : MMath(Hons) Mathematics with Year long work placement (Year 4)
  • USMA-AKM15 : MMath(Hons) Mathematics with Year long work placement (Year 5)

Notes: