- Academic Registry
Programme & Unit Catalogues


PH10052: Properties of matter [WL]

[Page last updated: 21 April 2022]

Academic Year: 2022/3
Owning Department/School: Department of Physics
Credits: 6 [equivalent to 12 CATS credits]
Notional Study Hours: 120
Level: Certificate (FHEQ level 4)
Period:
Semester 1
Assessment Summary: EX 85%, PR 15%
Assessment Detail:
  • EXAMINATION (EX 85%)
  • PRACTICAL (PR 15%)
Supplementary Assessment:
Like-for-like reassessment (where allowed by programme regulations)
Requisites: Students must have A-level Physics or Chemistry (or equivalent) and A-level Mathematics (or equivalent) to undertake this unit.
Learning Outcomes: After taking this unit the student should be able to:
* use simple model potentials to describe molecules and solids;
* solve simple problems for ideal gases using kinetic theory;
* describe the energy changes in adiabatic and isothermal processes;
* derive thermodynamic relationships and analyse cycles;
* derive and use simple transport expressions in problems concerning viscosity, heat and electrical conduction;
* demonstrate the correct use of common laboratory equipment, maintain a scientific logbook, perform basic error analysis and produce an outline scientific report.

Aims: The aims of this unit are to gain insight into how the interplay between kinetic and potential energy at the atomic level governs the formation of different phases and to demonstrate how the macroscopic properties of materials can be derived from considerations of the microscopic properties at the atomic level.

Skills: Written Communication T/F A, Numeracy T/F A, Data Acquisition, Handling, and Analysis T/F A, Information Technology T/F A, Problem Solving T/F A, Working as part of a group T/F, Practical laboratory skills T/F A.

Content: : Balance between kinetic and potential energy (2 hours).
Gases (3 hours): The ideal gas; kinetic theory; Maxwell-Boltzmann distribution, equipartition. The real gas; van der Waals model.
The ideal solid (3 hours): Model potentials and equilibrium separations of molecules and Madelung crystals. Simple crystal structures; X-ray scattering and Bragg's law.
First and second laws of thermodynamics (5 hours): P-V-T surfaces; phase changes and critical points; thermodynamic temperature and heat capacity of gases.
Mechanical and transport properties (9 hours): Derivation of mechanical (viscosity, elasticity, strength) and transport properties (heat and electrical conduction) of gases and solids from considerations of atomic behaviour. Qualitative understanding of viscosity (Newtonian and non-Newtonian) in liquids based on cage models.
Laboratory: Performance of experiments designed to develop practical skills and support lecture material.

Programme availability:

PH10052 is Compulsory on the following programmes:

Department of Physics
  • USXX-AFB03 : BSc(Hons) Mathematics and Physics (Year 1)
  • USXX-AAB04 : BSc(Hons) Mathematics and Physics with Study year abroad (Year 1)
  • USXX-AKB04 : BSc(Hons) Mathematics and Physics with Year long work placement (Year 1)
  • USXX-AFM01 : MSci(Hons) Mathematics and Physics (Year 1)
  • USXX-AAM01 : MSci(Hons) Mathematics and Physics with Study year abroad (Year 1)
  • USXX-AKM01 : MSci(Hons) Mathematics and Physics with Year long work placement (Year 1)

Notes:

  • This unit catalogue is applicable for the 2022/23 academic year only. Students continuing their studies into 2023/24 and beyond should not assume that this unit will be available in future years in the format displayed here for 2022/23.
  • Programmes and units are subject to change in accordance with normal University procedures.
  • Availability of units will be subject to constraints such as staff availability, minimum and maximum group sizes, and timetabling factors as well as a student's ability to meet any pre-requisite rules.
  • Find out more about these and other important University terms and conditions here.