CH40039: Computational chemistry
[Page last updated: 09 August 2024]
Academic Year: | 2024/25 |
Owning Department/School: | Department of Chemistry |
Credits: | 3 [equivalent to 6 CATS credits] |
Notional Study Hours: | 60 |
Level: | Masters UG & PG (FHEQ level 7) |
Period: |
- Semester 2
|
Assessment Summary: | CWRI 100% |
Assessment Detail: | |
Supplementary Assessment: |
- Like-for-like reassessment (where allowed by programme regulations)
|
Requisites: |
In taking this module you cannot take CH30039
Before taking this module you must take CH20023 OR ( take CH30187 AND take CH20148 ) OR ( take CH30239 AND take CH20148 )
|
Learning Outcomes: |
After studying this unit, students should be able to:
* Describe the concepts of spin states, electron density, spin density, excited states and magnetic properties in the context of closed-shell and open-shell inorganic complexes.
* Understand the concepts of spin state energetics, magnetic coupling in multinuclear complexes, specific spectroscopic methods and their prediction (e.g. UV-vis, X-ray absorption/emission, NMR, EPR, Mößbauer).
* Describe the difference of single- vs. multi-reference methods and static vs. dynamic approaches in computational chemistry, and outline their operational working in typical algorithms.
* Describe the usefulness and limitations of selected computational methods in a variety of chemical situations in terms of cost vs. accuracy.
* Appreciate the significance of empirical corrections for relativistic and environmental effects and discuss choices of basis set in context.
* Critically analyse the use of computational methods in recent research papers.
|
Aims: | The unit will provide a deeper understanding of computational approaches for the analysis of the electronic structures of molecules in gas phase and solution, building on CH20238/CH30239 (An Introduction to Computational Chemistry). Students will study the scope and limitations of standard computational approaches such as molecular mechanics, Hartree-Fock theory, Density Functional Theory, and post-Hartree Fock methods. The unit will focus on the scope and limitations of each computational approach. It will also cover computational spectroscopy and electronic structure analysis, and use examples from the recent literature to showcase their applications in context.
|
Skills: | Problem solving (T, F, A), Independent working (F).
|
Content: | * Scope and limitations of specific contemporary single- and multi-reference methods
* Electronic states
* Potential energy surface
* Ab initio spectroscopy
* Environmental effects
|
Course availability: |
CH40039 is Optional on the following courses:
Department of Chemistry
- USCH-AAM03 : MChem(Hons) Chemistry with Study year abroad (Year 4)
- USCH-AAM06 : MChem(Hons) Chemistry for Drug Discovery with Study year abroad (Year 4)
- USCH-AKM03 : MChem(Hons) Chemistry for Drug Discovery with Industrial Placement (Year 4)
- USCH-AKM02 : MChem(Hons) Chemistry with Industrial Placement (Year 4)
- USCH-AFM07 : MSci(Hons) Chemistry with Management (Year 4)
- USCH-AKM07 : MSci(Hons) Chemistry with Management with Industrial Placement (Year 5)
- USSC-AFM01 : MSci(Hons) Natural Sciences (Biochemistry with Chemistry stream) (Year 4)
- USSC-AAM01 : MSci(Hons) Natural Sciences (Biochemistry with Chemistry stream) with Study year abroad (Year 5)
- USSC-AKM01 : MSci(Hons) Natural Sciences (Biochemistry with Chemistry stream) with Professional Placement (Year 5)
- USSC-AFM01 : MSci(Hons) Natural Sciences (Biochemistry with Pharmacology stream) (Year 4)
- USSC-AAM01 : MSci(Hons) Natural Sciences (Biochemistry with Pharmacology stream) with Study year abroad (Year 5)
- USSC-AKM01 : MSci(Hons) Natural Sciences (Biochemistry with Pharmacology stream) with Professional Placement (Year 5)
- USSC-AFM01 : MSci(Hons) Natural Sciences (Biology with Chemistry stream) (Year 4)
- USSC-AAM01 : MSci(Hons) Natural Sciences (Biology with Chemistry stream) with Study year abroad (Year 5)
- USSC-AKM01 : MSci(Hons) Natural Sciences (Biology with Chemistry stream) with Professional Placement (Year 5)
- USSC-AFM01 : MSci(Hons) Natural Sciences (Chemistry with Biochemistry stream) (Year 4)
- USSC-AAM01 : MSci(Hons) Natural Sciences (Chemistry with Biochemistry stream) with Study year abroad (Year 5)
- USSC-AKM01 : MSci(Hons) Natural Sciences (Chemistry with Biochemistry stream) with Professional Placement (Year 5)
- USSC-AFM01 : MSci(Hons) Natural Sciences (Chemistry with Biology stream) (Year 4)
- USSC-AAM01 : MSci(Hons) Natural Sciences (Chemistry with Biology stream) with Study year abroad (Year 5)
- USSC-AKM01 : MSci(Hons) Natural Sciences (Chemistry with Biology stream) with Professional Placement (Year 5)
- USSC-AFM01 : MSci(Hons) Natural Sciences (Chemistry with Pharmacology stream) (Year 4)
- USSC-AAM01 : MSci(Hons) Natural Sciences (Chemistry with Pharmacology stream) with Study year abroad (Year 5)
- USSC-AKM01 : MSci(Hons) Natural Sciences (Chemistry with Pharmacology stream) with Professional Placement (Year 5)
- USSC-AFM01 : MSci(Hons) Natural Sciences (Chemistry with Physics stream) (Year 4)
- USSC-AAM01 : MSci(Hons) Natural Sciences (Chemistry with Physics stream) with Study year abroad (Year 5)
- USSC-AKM01 : MSci(Hons) Natural Sciences (Chemistry with Physics stream) with Professional Placement (Year 5)
- USSC-AFM01 : MSci(Hons) Natural Sciences (Physics with Chemistry stream) (Year 4)
- USSC-AAM01 : MSci(Hons) Natural Sciences (Physics with Chemistry stream) with Study year abroad (Year 5)
- USSC-AKM01 : MSci(Hons) Natural Sciences (Physics with Chemistry stream) with Professional Placement (Year 5)
|
Notes: - This unit catalogue is applicable for the 2024/25 academic year only. Students continuing their studies into 2025/26 and beyond should not assume that this unit will be available in future years in the format displayed here for 2024/25.
- Courses and units are subject to change in accordance with normal University procedures.
- Availability of units will be subject to constraints such as staff availability, minimum and maximum group sizes, and timetabling factors as well as a student's ability to meet any pre-requisite rules.
- Find out more about these and other important University terms and conditions here.
|