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More importantly, the use of HPC allowed 
Paul to extend the numerics to later times, 
finding that it is possible to accurately com-
pute expectation values up to the point at 
which they appear equilibrated experimen-
tally.   
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code is based on Ref. [6], which uses the 
Message Passing Interface (MPI). Figure 1 
shows the comparison of the simulation 
results with the experimental data. 
 

     For this problem, a weak scaling analysis 
was possible since different simulations 
involved differing numbers of particles N, 
where  is an N odd integer. The effective 
system size is roughly equal to 2N, so one 
would expect the computation time to 
grow approximately linearly with N. For N 
< 11, parallelisation was found to be un-
necessary, so these simulations were car-
ried out sequentially on a single compute 
node. For larger systems, Paul used p 
compute nodes, where p = (N-7)/2. For  N 
between 19 and 39 (corresponding to 6 ≤ 
p ≤ 16), respectable weak scaling was 
found as shown in figure 2, with the wall 
times constant to within a few percent. All 
simulations were carried out on Balena’s 

Dell PowerEdge 
C8220 nodes, com-
prising 64 GB of DDR3 
SDRAM and two Intel 
E5-2650 v2 processors 
(20 MB cache, 2.60 
GHz base frequency), 
giving a total of 16 
cores per node. These 

cores provided an additional, lower level 
of shared-memory parallelisation for linear 
algebra operations via the Intel Math Ker-
nel Library, although the multithreading 
efficiency was relatively poor. 
 

     In contrast to the numerics in Ref. [2], 
which reportedly took about five weeks of 
wall time per simulation [7], Paul’s parallel 
calculations required less than 50 hours. 
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S 
imulating quantum many-body sys-
tems numerically is a difficult prob-
lem in general since quantum states 

are described by multidimensional arrays 
of numbers (tensors) that scale exponen-
tially with system size. Because of this, 
physicists have started turning to experi-
mental quantum simulators and quantum 
computers. These devices have the poten-
tial to revolutionise our knowledge of com-
plex quantum systems but are still in their 
infancy. It is therefore important to verify 
their accuracy and to test claims of 
“quantum advantage”. 
 

     In a recent pre-print [1], Paul revisits a 
landmark Nature Physics paper [2] that de-
scribes “the first dynamical quantum simu-
lator” [3]. This experiment used ultracold 
atoms in an opti-
cal lattice to simu-
late the relaxation 
towards equilibri-
um of an interact-
ing one-
dimensional Bose 
gas. Using Bath’s 
high-
performance computing (HPC) resources, 
Paul decided to investigate whether these 
results could be verified on a non-quantum 
(i.e. classical) supercomputer. To do this, 
he represented the state of the system in a 
compressed format known as a tensor train 
or matrix product state (MPS). This allowed 
him to use a parallel implementation [4] of 
the quasi-exact time-evolving block deci-
mation (TEBD) algorithm [5]. Paul’s TEBD  
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Figure 1: Relaxation with simulation time (t) of the mean density of odd lattice sites (nodd) 
for various interaction strengths (U). Markers show the experimental quantum simulator 
data, while the solid curves are the parallel TEBD results. 

Figure 2: Weak scaling plots of Paul’s 
TEBD code. 
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Running Interactive Jupyter Notebook from Your Local 
Machines on Nimbus  

U N I V E R S I T Y  O F  B A T H  

Jupyter Notebook is a useful tool for shortening the feedback 
loop from coding and results visualization in an interactive 
way. By launching a "headless" Jupyter Notebook as a batch 
job, users can tap into Nimbus's robust computing resources 
while enjoying the familiar Graphical User Interface (GUI) on 
their local machines' web browsers—be it a desktop or a lap-
top. This will allow the User to use the Nimbus compute re-
sources without the need of installing any Python packages on 
the local machine to run the Jupyter Notebook. 
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• If you would like to contribute a case study or article to be featured in HPCBytes, 
please get in touch with the Research Computing team. 

• If you would like to hear more, please subscribe to the Research Computing mailing 
list here: https://forms.office.com/e/rF8rLWbakA  
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# The job script to launch Jupyter. Change 

cores/partition as per your needs and account. 

#!/bin/bash 

#SBATCH --job-name=jupyter-test 

#SBATCH --output=jupyter-test.out 

#SBATCH --error=jupyter-test.err 

#SBATCH --account=CA-CS1HGN-0XX 

#SBATCH --qos=paygo-fsv2-1 

#SBATCH --nodes=1 

#SBATCH --ntasks-per-node=1 

#SBATCH --partition=paygo-fsv2-1 

#SBATCH --time=01:00:00 

 
NOTEBOOK_LOGFILE=jupyterlog.out 
# get port forwarding info into a file 

node=$(hostname -s) 

user=$(whoami) 

cluster="nimbus.hpc.bath.ac.uk" 

port=9300 

 

echo -e "Run the following command from your 

local machine terminal with local machine 

port YYYY: 

$ ssh -N -f -L YYYY:${node}:${port} ${user}

@${cluster}" > port_forwarding.txt 

 

module purge 
source /apps/build/easy_build/scripts/id_instance.sh 

source /apps/build/easy_build/scripts/setup_modules.sh 

module load Anaconda3/2022.10 

 

# Run the Jupyter notebook 

jupyter notebook --no-browser --ip=${node} -

-port=${port} > ${NOTEBOOK_LOGFILE} 2>&1 

Tip of the Month 
Select your partition on Nimbus  

# list all available partitions 

[user@login1 ~]$ sinfo 
# Check details of a specific partition (Max. 

walltime and nodes/job, tot. nodes, default mem..) 

[user@login1 ~]$ scontrol show partition par-

tition_name 

HPC News and Updates 

Isambard 3 coming soon  
Isambard 2 wi l l  go into maintenance mode before  i ts  
June end shutdown.  From May 1st, 2024, no new 
users or updates wil l  be accepted .  Users  should 
move the ir  data  to personal  s torage by  June's  end.   
Applicat ion process for  new user  accounts on Isam-
bard 3 wi l l  be announced soon.  

Step-1: Submit the Jupyter Notebook Job on Nimbus 

Step-2: Once the job is running, do the port forwarding 
on your local machine 

[user@nimbus-1-login-1~]$ cat port_forwarding.txt 

 

Run the following command from your local machine 

terminal with local machine port YYYY: 

$ ssh -N -f -L YYYY:nimbus-1-paygo-xxxxxxxx:9333 

user@nimbus.hpc.bath.ac.uk 

- Check the “port_forwarding.txt” file made after 

the job started running:  

- Run the port forwarding command from your local 

machine terminal (Linux/putty/mobaxterm etc.). 

Remember to replace YYYY with a local port no. 

which could be same as Jupyter port on Nimbus. 

This may ask for your nimbus password.  

[@localmachinexxx]$ ssh -N -f -L 9300:nimbus-1-

paygo-xxxxxxxx:9300 user@nimbus.hpc.bath.ac.uk 

Step-3: Open web browser in local machine and type 
localhost:YYYY  

[user@nimbus-1-login-1~]$ tailf jupyterlog.out 

http://nimbus-1-xxxxxxx:9300/

token=93dd55ca40b2f463fxxxxxxxxxxxxx 

- Get the token from jupyterlog.out file and paste 


