Probing the Early Universe with Gamma Ray Bursts

Patricia Schady
Department of Physics

History of the Universe

The galactic baryon cycle

The galactic baryon cycle

Observations of nearby galaxies

Increasingly distant galaxies

Very distant galaxies

Using GRBs as a probe of cosmic chemical build-up

Gamma Ray Bursts (GRBs)

GRB emission mechanism

Compact star mergers

Core collapse of massive star

Metallicities in absorption

Absorption-derived metallicities are largely model-independent and sensitive down to very low metallicity values

Cosmic chemical evolution

Want to....

- measure host galaxy stellar mass and SFR
- cross calibrate absorption to emission-line derived metallicities

Cross-calibrate metallicity diagnostics

Z_{em}: More sensitive for more massive, chemically evolved galaxies

Zabs: More sensitive for low-mass, chemically unenriched galaxies

Cross-calibrate metallicity diagnostics

Yates, Schady+in prep

With JWST+GRBs can study discrepancy in metallicity diagnostics

Summary

- Long GRBs are excellent and unique probes of distant, star forming galaxies
- The imprint left on their afterglow spectra from intervening material provides a unique view of the chemical composition and conditions of the ISM in their host galaxies
- To optimise their use as probes of distant galaxies, need to investigate how properties inferred from absorption spectroscopy compare to emission-based analysis
- The future NASA JWST mission (all \$9.66 of it!) promises significant headway in this area or research, and in the cosmic chemical evolution in general
- Future, sensitive infrared and X-ray missions (Theseus, ATHENA)
 will greatly increase high-z GRB samples